
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Visual Iconic Object Oriented Programming
to Advance Computer Science Education and Novice Programmin

A Thesis

by

Nancy Silva Martinez
Submitted to the Graduate School o f the

University o f Texas - Pan American
in partial fulfillment o f the requirements for the degree of

MASTER OF SCIENCE

August 2001

Major Subject: Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 1405526

Copyright 2001 by
Martinez, Nancy Silva

All rights reserved.

___ ®

UMI
UMI Microform 1405526

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Visual Iconic Object Oriented Programming
to Advance Computer Science Education and Novice Programming

A Thesis

by

Nancy Silva Martinez

Approved as to style and content by:

Richard H. Fowler, Ph. D.
Chair of Committee

7 / Z w

Wendy A. Lawrence Fowler, Ph. D.
Committee Member

Pearl Weaver Brazier, M. S.
Committee Member

August 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

Nancy Silva Martinez, Visual Iconic Object Oriented Programming to Advance
Computer Science Education and Novice Programming, Master of Science, Computer
Science, August 2001, 33 pages, 9 figures, 50 references, 39 titles, and 11 urls.

Learning how to program a computer is difficult for most people. Computer
programming is a cognitively challenging, time consuming, labor intensive, and
frustrating endeavor. Years of formal study and training are required to learn a
programming language’s world of algorithms and data structures. Instructions are coded
in advance before the computer demonstrates the desired behavior. Seeing all the
programming steps and instruction code is complicated. There exists a tremendous gap
between the representations the human brain uses when thinking about a problem and the
representations used in programming a computer. Often people are much better at
dealing with specific, concrete objects than working with abstract ideas. Concrete and
specific programming examples and demonstrations can be very useful. When cleverly
chosen and properly used, programming examples and demonstrations help people
understand the abstract concepts. Programming by example or demonstration attempts to
extend these novel ideas to novice programming.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGEMENTS

The author wishes to express sincere appreciation to professors, Dr. Richard H.
Fowler and Dr. Wendy A. Lawrence Fowler, for their assistance in preparing this thesis.
Special thanks are due to Dr. Xiannong Meng, Dr. Zhixiang Chen, Professor Pearl
Brazier, Dr. Richard K. Fox, and Dr. John P. Abraham, professors and mentors. Special
recognition is given to Dr. Jacob Jen-Gwo Chen, former Dean of the College of Science
and Engineering, Elvie Davis, Dean of Students, and Dr. Miguel A. Nevarez, President of
The University of Texas — Pan American.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

Page

ABSTRACT.. iii

ACKNOWLEDGEMENTS...iv

TABLE OF CONTENTS.. v

LIST OF FIGURES...vi

1. Introduction .. 1

1.1 Initial Ideas.. 1

1.2 Growth and Development...5

2. Visual Programming..7

2.1 Tools and Techniques... 7

2.2 Novice Programming.. 11

3. Statement of the Problem...16

4. Overview... 17

5. Approach... 18

6. Implementation..19

7. Conclusion...20

8. Lim itations... 21

9. Future W ork... 22

References... 23

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

Page

FIGURE - 1 LEFT AND RIGHT HEMISPHERES OF THE HUMAN BRAIN..........2

FIGURE - 2 GRAPHICAL REPRESENTATIONS OF ALGORITHMS......................8

FIGURE - 3 VISUALIZING ALGORITHMS.. 10

FIGURE - 4 GRAPHICAL REPRESENTATIONS OF ALGORITHMS....................11

FIGURE - 5 VISUALIZING ALGORITHMS.. 12

FIGURE - 6 PROGRAM VISUALIZATION... 13

FIGURE - 7 INTERACTIVE ANIMATED PROGRAM VISUALIZATION............ 14

FIGURE - 8 ANIMATION OF ALGORITHMS.. 17

FIGURE - 9 VISUAL ICONIC OBJECT ORIENTED PROGRAMMING.................19

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1. INTRODUCTION

The human visual cortex occupies most of the brain. Icons appeal to users
because icons engage brain capacity evolved for other purposes. The benefit is that
everyone has the ability to easily understand icons and will evaluate their significance
similarly to objects and events in a three dimensional world. The more engaging and life
like figures are the more intelligent, conforming, and friendly they will be to the novice
programmers [9]. Visual iconic object oriented programming is a pedagogical,
integrating, discovery agent exploring human and computer interactions on the Internet.
Enhanced perceptions make better experiences. Three dimensional space requires
multiple degrees of freedom which personalized perceptual intelligent user interfaces will
provide in real time in the future.

1.1 INITIAL IDEAS

Novice programmers can use pictures to communicate with computers and serve
as a medium to teach programming in introductory computer science courses. The
human brain’s left hemisphere is responsible for linguistic ability while the right
hemisphere perceives visual patterns. The left hemisphere of the brain thinks analytically
and logically while the right hemisphere thinks in an intuitive and artistic sense.
Programming has been considered to be an activity of the left hemisphere requiring
analytical, logical, and verbal ability. However, visual programming concentrates more
on the capabilities of the right hemisphere (Figure 1).

Visual programming is directed towards increasing the productivity of
professional programmers and facilitating learning for novice programmers. The
phenomenal growth of end user computing necessitates a larger user population and a
greater number of novice programmers. The majority of potential computer users are not
computer professionals. However, software is still designed as if users are professional
programmers. There has been a lack of emphasis on human convenience and a
concentration on machine efficiency because computing costs were expensive.
Efficiency took precedence over ease of programming. The challenge is to bring
computer capabilities usefully and easily to people with no special computer training [1].

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

COMPUTER

Figure 1: Left and Right Hemispheres of the Human Brain.

Icons, pointing devices, and menus have diminished the need to remember
commands. However, the tools are limited to a particular predesigned category of
applications. A radical departure from traditional programming is necessary if
programming is to be made more accessible to a large population. As the level of the
generations of programming languages has gone up, fewer details have been required
from the user. The tradition of linear representations to give instructions to the computer
in a statement by statement manner have persisted. The structure o f programming
languages is still one dimensional and textual.

In visual programming, graphical representations and pictures play a part in the
programming process. Pictures concisely convey more meaning than words and are in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3

some ways easier to understand than text. People understand pictures regardless of the
language they speak, and icons can be a means of communicating with computers.
People from varied backgrounds have developed visual programming. Visual
programming uses meaningful graphic representations in the process of programming.
The visual environment deals with the visualization of data or information expressed in
graphical form and presented to the user in a spatial framework. Visual systems are
devoted to direct manipulation for information retrieval and graphical views for the
visualization of the information retrieved. Visualization of software design focuses on a
software development environment with requirements, specifications, design decisions,
and system structures all in graphical form.

In graphical programming, a user does not need to mentally visualize the effects
of instructions while constructing a program. The effects take place on the screen
through a programming process relying on interactive graphics with the emphasis on the
interaction and not the language. The major areas of visual programming are the visual
environment and the visual languages. Visual languages include languages for handling
visual information, for supporting visual interaction, and for programming with visual
representations.

Visual languages process image information, manipulate and query pictorial data,
and allow direct reference to pictures. However, even though the visual language
information involves pictures, the visual languages themselves are textual. Icons and
graphical objects are being used to communicate with computers. Icons and pictures
need software to be animated in the programming world. Visual languages define, create,
and manipulate pictorial symbols. Visual representations and visual interactions are
supported by visual languages that are themselves textual and not visual. Visual
programming languages allow users to program with visual expressions. Pictorial
representations are used to carry out programming concepts with graphical
representations designed as an integral part of languages. Icons and graphical symbols are
deliberately designed to play the central role in programming.

A visual language is a set of iconic sentences constructed with a given syntax and
semantics. Icons are applicable to the design of icon oriented user interfaces. A visual
language compiler can accept the iconic system, the icon operators, and definition of
basic icons as input. The visual language compiler can parse an iconic sentence to
determine its syntactic structure and semantic meaning. An icon oriented system is
generated by the visual language compiler if the initial design is satisfactory. Iconic dual
representation of objects and semantics can be a unified methodology for visual language
design and icon oriented system design.

In designing visual, useful, and usable interface systems, the goals are to improve
internal and external communication among application users, expedite the decision
making process, and improve the productivity of an organization. A visual interface
design is the software directly interacting with the users with human behavior being very
different from the other system components dealt with by the program. Visual interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4

design increases the functions of the design tools and enables the integration of different
medium and applications.

Images are virtual entities [4]. Icons help to achieve instant recognition of
familiar symbols. Icons can be classified as pictorial and symbolic icons. Pictorial icons
use pictures to represent the abstract and semantic information of operations. Symbolic
icons are combined with some characters to help capture semantic information. Iconic
interfaces must be consistent and unambiguous. A reasonable visual representation
considers application and cultural dependence, easy recognition, distinction from other
stylized icons within the system, and consistency in an environment.

A direct manipulation user interface allows the user to operate directly on the
objects in the computer rather than carrying on a dialogue about them. Instead of
explicitly invoking commands either through a command language or menu selection to
specify the operations on the objects, the user manipulates objects visible on the screen to
represent the action.

Distance and engagement give a feeling of directness. Distance is the mental
effort required to translate thoughts to the physical requirements of the system. In the
user interface, this distance involves a relationship between the task the user has in mind
and the way the task can be accomplished via the interface. Using graphical
representations to depict the objects and actions of the user interface offers the possibility
for the user to reduce cognitive effort to accomplish the task. Choosing an appropriate
user interface for the objects and actions required is critical to the effective use of direct
manipulation. Direct engagement is the sense of manipulating objects directly on a
screen rather than conversing about them. There is a feeling of direct involvement with
the world of objects. In a direct manipulation interface, the world of interest is explicitly
represented and there is no intermediary between the user and the world. The interface is
itself a world where the user can act and that changes state in response to actions.

Animation has the ability to present a great deal of information in a short time and
ascertains features not obvious in pictures. Color enhances illustrations, distinguishes
and differentiates structures, and increases the amount of information presented. Both
novices and experts must be accommodated.

An object oriented system provides standard objects for managing the user
interface and a framework to guide and help the designer create and modify a specific
user interface. The object abstraction allows encapsulation of both static data and object
behavior. This approach supports the separation of the interaction between user and
application in a natural way and enhances the development of direct manipulation
interfaces.

A visual interactive design system uses direct manipulation interfaces as the basis
for the construction of interface design tools allowing the designer to create the
interaction techniques by demonstrating how the screen should appear and how the end
user should interact with the display. Techniques of storyboards, visual programming,
and programming by example are used in this interface construction style.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5

1.2 GROWTH AND DEVELOPMENT

Visual object oriented programming uses graphical techniques in computer
programming and models systems in terms of objects. Visual object oriented
programming uses an object oriented programming language with a visual syntax and an
environment with graphical tools to manipulate programs written in a textual object
oriented language. A class is an abstract description of a set of objects providing the
same functionality and differing according to the values of their private information.
Each class member specifying these values is a class instance. Polymorphism is the
ability of different kinds of objects to respond to the same message. Class hierarchies are
structured around function similarity with each subclass inheriting the specification of its
super classes. The original object serves as a prototype for new objects.

A language grammar with graphical pictures and animations has a visual syntax.
A visual syntax may have spatial information, containment, connected relationships, and
visual attributes of location and color. A visual environment has tools using graphical
techniques for manipulating pictorial elements and for displaying program structure. A
visual environment for constructing a program may include point and click for action
invocation or selection. A visual environment may also include selecting and relating
objects by drawing a line from one object to another [3]. Lively visual programming
languages provide immediate feedback.

Visual object oriented systems provide the reuse of a function through classes and
their instances. Visual object oriented programming combines the reusability and
extensibility of object oriented technology and the accessibility of visual programming
enhancing the ability to create visual environments. Every kind of object can have
complementary objects providing visualizations of the capability and status of the object.
Individual pictorial representations display the functions an object supports and tools are
used to draw links among objects.

One of the strengths of object oriented languages is their support for abstract
specification in terms of classes and hierarchies of classes. The object oriented approach
encourages a style of programming leading to modular architectures promoting reliability
and reusability required for large scale programming. The merging of visual and object
oriented programming technologies offers the largest possible productivity and reliability
gains.

Universal methods may include built in primitives. Class methods may be
represented as named icons in a methods window for the class. User defined universal
methods may be represented by icons in a universal window. A method may consist of a
sequence of cases where each case is a dataflow structure consisting of data inputs, data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6

outputs, and a set of operations with connections between them. The icon shapes for
initialization, extraction, and assignment class methods may indicate the functions of
these methods.

Many object oriented languages provide classes describing a collection of objects
with common characteristics and objects representing instances of classes. Objects
usually contain data and operations manipulating that data including instance variables
and methods. Classes provide a means of encapsulation and information hiding like
private instance variables and methods in classes. Classes may be described with the
physical aggregation of data and methods and with the enclosure of them. A visual
programming language supports objects, classes, and all the semantics related to creating,
defining, and manipulating objects [6]. A visual programming language supports
inheritance, polymorphism, and dynamic dispatch. Object oriented programming
languages provide powerful features such as objects, classes, inheritance, polymorphism,
and dynamic dispatch to facilitate solving large complex programming challenges.

Real world objects are identified by appearance and interface objects are
identified by view. Visual shells are concrete representations giving the illusion of the
concrete manipulation of objects. The analogy between an object’s appearance and
behavior in the physical world and the object’s representation and behavior in the
interface enables users to transfer knowledge from their real world experience to their
computer task. Latency is the time taken by the user interface to respond when the user
first initiates an action. Latency is preferably reduced. Feedback bandwidth is the rate at
which information is presented to the user during an interaction after the initial latency
time. Feedback bandwidth is preferably expedited.

Icons contain a set of graphical primitives describing their appearance. The color
of any graphical object can be dependent on the value of another attribute from the same
class to which the icon belongs. A strength of object oriented programming is its support
for leveraging existing software. Object oriented programming classes can be used
unchanged and easily can be extended for reuse in new applications. Visual
programming can reduce the time and effort required to write and debug programs and
can increase the programmer’s accessibility to information about the behavior of the
program [5]. Visual programming languages use graphics and other visual techniques to
allow a programmer to express the desired logic of a program, to view and trace changes
in the program during execution, and to understand how the program works.

Visual specifications can generate textual code. Objects should be visual and
interactively accessible. A visual language environment is object focused with objects
directly available for interaction and matching view focused environments through object
availability and liveliness [2], Programmers visualize programs in their minds because
people deal with the concrete more easily than with the abstract. Program elements of
manipulated data and behavior applied are made concrete through object encapsulation.
Environmental immediacy and primacy of action present concrete object entities.
Objects may be abstracted to reveal differing parts within multiple and separate tools.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7

View focused environments have interactive tools presenting views of objects.
Object focused environments give the programmer direct interactivity with objects of the
language. The sense of immediacy with the object semantic is a feeling of direct
engagement. View focused environmental direct engagement is achieved by eliminating
indirection by view focused tools and by having object focused environments increase
direct engagement frequency making objects seem like physical real world things. The
object’s image and behavior is three dimensional in an artificial environmental reality
[31]. Animation gives objects a smooth, lively, engaging, and realistic movement. Tool
objects in the interface centralize functionality for activities. Multiple simultaneous
views are useful in comparing separate aspects of the object at once. However, concrete
objects should be in only one place at a time just like real world objects.

A lively interface allows objects to move, change, transform, and interact on their
own. Tools show relationships among objects in view focused environments. Tools
gather multiple objects to operate on several objects at once. The enforcement of the
unique identities of objects makes them concrete. An object focused programming
environment reduces the distance between the programmer’s mental model of objects and
the environment’s representation of the objects.

2. VISUAL PROGRAMMING

Computer science students seem to be more visually oriented than ever before due
to the visual influence of the existing era of real time video games and MTV. Students
can learn by seeing a concept described with a picture and remember the concept by
recalling the picture associated with the concept. Visual programming languages will
process information, support human computer communicative interaction, and allow
novice programmers with no highly trained programming skills to communicate with
computers and program them with visual expressions [10]. Icons, pointing devices,
graphics, and programming with interactive graphical support are central to giving
programming capabilities to people who are not programmers by profession.

2.1 TOOLS AND TECHNIQUES

Research by M. Raner [33], E. Odekirk, D. Jones, and P. Jensen [34], A. E. Fleury
[35], R. Rasala, J. Raab, and V. K. Proulx [36], R. Morelli, R. Walde, and G. Marcuccio
[37], suggests icon based programming languages are more effective than text based
languages in teaching introductory programming procedural and object oriented concepts
to computer science students [40]. Although R. Pattis [38] and R. Rasala [39] state
otherwise, emphasizing text based languages. Iconic programming with icons

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8

representing all the major programming constructs and data structures within a syntax
directed environment allow students to generate syntactically correct code for any one of
several text based languages. The iconic programming language environment allows
students to program with icons representing all the major programming constructs
including loops and conditional branching within a syntax directed environment
generating syntactically correct code for any text based language.

Graphical representations of algorithms are an effective methodology for learning
programming skills (Figure 2) [8], Iconic programming was first developed for high
level workstations because of their speed and memory requirements. More visually
based programming environments are available due to the rapid progress in high speed,
high resolution, large random access memory, and inexpensive computers. A graphical
representation for the flow of control increases semantic accuracy by accurately
conveying to students which variables of the proper type can be used at a particular point
in the algorithm. Object oriented constructs define and implement class icons in a visual
environment. Attributes and methods are declared in a manner similar to declaring
variables and subroutines with attributes and methods being declared as public, private,
or protected. Iconic representations support the strengths of the object oriented paradigm.

Figure 2: Graphical Representations of Algorithms

Conventional programming environments give feedback to a programmer that
does not provide an overall view of the program’s behavior [41]. Conventional
languages only symbolize ideas and do not visualize or illustrate the ideas. The symbols
are arbitrary and do not provide an actual visualization. The key ideas of object
orientation need to be visualized. Visualization and illustration are required for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9

aspects of encapsulation and abstraction, instantiation of objects, usage o f references and
pointers, inheritance and its consequences, method overriding, polymorphism, member
protection and visibility, abstract classes, and separation of interface and implementation.
The visualizations can be animations making use of shades and shadows for emphasis.
Students might be taught introductory programming with visual programming
environments based on the Java programming language emphasizing building user
friendly interfaces and not just algorithms.

Java has many excellent features for teaching sequential programming. The Java
development kit for the Java language includes an abundant collection o f class libraries
application programming interfaces for data structures, input and output, networking,
remote procedure calls, and graphics [42]. Students can be introduced to object oriented
concepts such as classes, instances, attributes, and methods. Object oriented
programming in Java is more complicated than procedural programming and object
oriented programming benefits larger programs.

Animation of data structures provides students with an alternative view in
understanding a newly presented data structure or algorithm and helps students debug a
program using the data structure [12]. An interactive animation allowing students to try
different input can be easier to understand and remember than a textual representation.
Using animations to debug programs helps students find errors quicker by viewing
incorrect movement or seeing pieces incorrectly disconnected. Java and Web based
algorithm animations are relatively easy to use architecture independent methods for
creating data structure animations over the Web.

Students can write Java animation programs and display the animations with a
Web browser supporting Java. Few have leveraged the full capabilities of the Web and
Java. The popularity of the Web browser is due to its friendly visual interface [43], The
Web can be used to build courseware modules in order to aid student understanding.
Objects that can be manipulated are primitive objects like a geometrical shape and
intelligent objects representing data structures with specific commands to perform
operations. Animation brings alive programs allowing students to easily see each
instruction and its effects. Software visualization systems allow custom animations that
capture the dynamics o f programs.

Animations or visualizations offer feedback that benefits different learning styles
(Figure 3). Visualization and animation can simplify viewing programs by focusing on
either objects changing over time or displaying a large amount of data too complex or
tedious in a textual manner. Animations and interactive graphics can generate student
interest and enthusiasm which can lead to better comprehension and mastery of the
material in computer science courses [14]. The visual component of the animations
offers another dimension assisting students with the difficult task of debugging.
Animations are accessible on all platforms running Java.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

Figure 3: Visualizing Algorithms

Computer science students can benefit from exposure to concurrent programming,
event driven programming, graphics management, enhanced human computer interfaces,
data compression, image processing, and genetic algorithms. A Java hosted algorithm
visualization client and server environment for delivering algorithm visualizations over
the Web will contribute to the pedagogical effectiveness of algorithm visualization for
students [44], Showing animations with source code helps keep students on track when
students deal with recursive algorithms or data structures because students can lose sight
of which interval of arrays is still under execution.

Java is a popular first language for university students because of its power as an
object oriented language contributing to students’ comprehension of construction and use
of objects [15]. Teaching can be enhanced when instructors listen to Java students’
thoughts and interpret students’ actions from the students’ perspective. Constructivism is
creating new knowledge by combining new experiences with current knowledge and
reflecting on the knowledge. All learning involves the interpretation of phenomena,
situations, and events. The experience of classroom instruction is interpreted through the
perspective of the learner’s existing knowledge. The power of object oriented
programming is having more than one class declaration and more than one object of one
of the classes. Beginning programming students can construct an understanding of the
syntactic and semantic rules involving the construction and use of objects in Java through
the study of object oriented programming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

2.2 NOVICE PROGRAMMING

Educational software should be expected both to give students quick intuition in
areas which are not treated thoroughly in class and to enable students to investigate
selected topics in more detail than would be possible with paper and pencil. Different
students learn at different rates and through different methods. Self paced learning with
the facility for replay for weaker students and with accelerated and exploratory
interaction for stronger students is a considerable benefit to teaching novice programmers
[45]. A quality education allows computer science students to contribute to their learning
and to develop a sense of ownership of the subject. Interactive visualization tools for
algorithms and computing models can provide a more compelling means of exploration
and feedback than traditional paper and pencil methods in theory and lecture. Students
can take advantage of exploratory, supplementary, Web accessible, graphical
environments allowing the construction and simulation of algorithms and computing
theory through experimental animations (Figure 4).

Figure 4: Graphical Representations of Algorithms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12

University computer science curricula require students to learn multiple
programming languages. Students often have difficulty with the multi-lingual nature of
the curriculum in learning and using different development environments and
programming languages with a compiler or interpreter. The learning curve with the
environments, not the languages, is most frustrating to students. Very few language
environments provide the user with program development and comprehension aids such
as automatic software visualization [46]. Novice programmers may feel they understand
an algorithm well; however, the algorithm animation may uncover inaccuracies and
misperceptions in their understanding (Figure 5). The animation of algorithms provides a
forum encouraging diligence and creativity in students in an engaging manner.

Orig inal a r r a y

Figure 5: Visualizing Algorithms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

Building an algorithm animation requires identifying the fundamental operations
of the algorithm to be portrayed visually [16]. Conceptual, fundamental thought and
reasoning must be given to the data manipulated by the algorithm, the interactions
occurring in the algorithm, and how the important high level design concepts are
manifested. These concepts must be made concrete through graphical depiction by
constructing the algorithm to animation mapping and determining what is unique to the
algorithm to be communicated visually (Figure 6). A useful way to leam a concept is to
have students teach it. Algorithm animation can be valuable due to the enthusiasm and
interest inspired in students promoting learning and comprehension.

1 2 1 4 1 6 1 3 8 7 6 21 2 2 1 8 3 2 9 1 8 1 7 2 0 1 5 1 5 1 1 4 1 0
r; 1 2 3 4 5 S 7 8 3 1 0 n 12 1 3 1 4 T-, 71; i 7 113 1 3 2 0 21

H E A R S O R T : C u r r e n t h e a p

Figure 6: Program Visualization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14

Interaction and animation engages students in learning (Figure 7). Students are
already comfortable with Web browsers. Algorithm animations, program code
animations, and animations of other computer science concepts are becoming available
on the Web. Animation, sound, and text help students understand the deeper aspects of
theory. Java can create a new interactive environment for student program development
utilizing the World Wide Web as a substitute for a textbook and for course administration
[17]. Java, graphics, and the Web are popular and successful in attracting women to
computer science, converting other majors to computer science programs, providing first
positive experiences with computing, providing logical progression for students
interested in computing and not having any programming experience.

w z & s s m imS»H3S;W-V"S-

anaftwttoml=* nuroanadstathigh]) {

& £Tonn counter^ sam igM :co u
K K £ ^ ^ R I T 1 ^ 9 H C 0 U X 6 f tL j - lU D flf

S^^^^rMwayltottofnl»temfKr

jSgSfci*dwm;.' V -V /'v i ‘■-■V,rCr-v^

ioaSnraurilB-]®

Figure 7: Interactive Animated Program Visualization

Program design is difficult to teach because it is a very abstract topic based on
heuristics understood through experience. Video game programming can motivate
students. Interactive games serve as software design programming projects solved with
abstract data types or object oriented design. Game programming needs to include
collections of interacting objects with the right design selected from various ones easing
the identification of design abstractions in abstract data types as well as in object oriented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15

frameworks. One of the most attractive areas of computer science to students is the
manipulation of images [47]. Image enhancement applies techniques to emphasize and
sharpen image features for display and analysis. Students write generic, reusable code
conforming to application programming interfaces to visualize algorithms.

Many educators are promoting the notion of teaching about classes and objects
first to help students adopt the object oriented paradigm at an early stage and encourage
them to focus on the application structure before beginning coding. Java’s clean support
for the object oriented paradigm is widely regarded as a suitable choice for introductory
teaching [18]. Java is consistently described as an excellent language for teaching the
object oriented paradigm. Java provides graphical support for object oriented design,
abstracts over files, and abstracts over the operating system. Java provides fully
integrated support for designing, editing, compiling, and testing a cycle. Java supports
interactive creations of objects and the interactive calling of methods for objects
providing support for incremental development which is one of the major advantages of
object orientation.

Educators are taking advantage of Java’s special features to teach novice
programmers. Java syntax is being taught with modem graphical user interface
concurrent code with classes [19]. Java allows students to work on interesting problems
without having to understand all details of how the code works and receive a practical
introduction to the modem programming experience of writing a section of a larger
program early emphasizing abstraction. In the transition from procedural to object
oriented programming, students learn objects have a state that changes over time as the
object is manipulated. In object oriented programming, the user interface code is
separated from the domain specific code. Students enjoy object oriented programming
more and have more fun filled discussions in class.

Java course work should include interaction and graphical user interfaces,
algorithms, object oriented programming, and Java specific issues with themes in
creativity and visually interactive methods. Java classes in Java’s graphic and interactive
capabilities should be suitable for anyone even if they have no prior experience in
programming, math, or science. Intuitive interactive graphics are motivating and
challenging. Graphical displays allow students to check whether their programs work
properly by viewing their program results and determining conformity to their
expectations. Java provides exposure to code modifications and experience using the
development environment for handling interactions with the user in developing graphical
user interfaces. Students can read entire functional blocks of another programmer’s code
and extend the code to add further functionality. Complicated programs can be studied
for completion and future collaborative work.

The focus on creativity results in a learning environment well suited for novice
programmers where each student is proud of the individuality of their work motivating
students to devote extra time to creative aspects and the exploration for interesting ways
to improve their work. Creativity helps personalize the learning experience making it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

easier to follow the progress of a particular student. Graphical user interfaces can
increase student interest and confidence levels. Java programs can be viewed to see if
they respond correctly motivating students to experiment with cause and effect between
program statements and applet appearance.

Java’s object oriented nature permits students to participate in complex visual
programs. Java allows encapsulation, ease of class reuse, and object oriented
programming with multiple class declarations and class objects. Emphasis should be
placed on abstract comprehension of the entire program not just line by line code
comprehension because the way students experience phenomena affects their competence
in object oriented programming. Recursion, abstraction, and encapsulation are used to
create flexible graphical user interface tools. Object oriented programming is most
valuable in large projects making extensive use of adapted and extended libraries.

3. STATEMENT OF THE PROBLEM

Learning how to program a computer is difficult for most people. Computer
programming is a cognitively challenging, time consuming, labor intensive, and often
frustrating endeavor. Years of formal study and training are required to learn a
programming language’s world of algorithms and data structures. Instructions are coded
in advance before the computer demonstrates the desired behavior [48]. Seeing all the
programming steps and instruction code is complicated. There exists a tremendous gap
between the representations the human brain uses when thinking about a problem and the
representations used in programming a computer.

Using charts and diagrams in association with programming is a manner in which
technical details have been presented almost since the start of programming. Flow charts
were originally developed as a visual aid for assembly language programmers because
assembly languages have no facility to enforce structured programming. Programmers
were instructed to draw flow charts to make the program structures clear in their minds to
prevent them from being lost and confused with voluminous, low level details.

Often people are much better at dealing with specific, concrete objects than
working with abstract ideas. Concrete and specific programming examples and
demonstrations can be very useful. When cleverly chosen and properly used,
programming examples and demonstrations help people understand the abstract concepts
[49]. Programming by example or demonstration attempts to extend these novel ideas to
novice programming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

4. OVERVIEW

Computer science students in introductory programming courses are eager to
work harder to learn Java and students have a high opinion of Java because they are
learning a marketable skill. Students are more motivated to learn a particular
programming language if they perceive the programming language as useful for them
beyond the immediate learning experience [20]. Java compiles source code for .java files
and generates .class files. Java includes the environment, built in types, operators, public
static functions, strings, arrays, utilities, toolkits, and applets.

Java simplifies C++ and Ada by removing many features and improving design
decisions. Java eliminates C++ features such as templates, operator overloading,
pointers, and various subtle C++ constructs. The Java improvement over C++ is the
exclusion of the C++ header files and class interface. Also, meaningful documentation
page can be extracted from a properly commented Java class through the use of the
Javadoc utility.

Java provides a simple mechanism for using graphical user interfaces and drawing
graphics more than adequate for use in an early computer science course (Figure 8) [21].
Java defines the Boolean built in type eliminating common (if(x=y)) C++ errors. Java
has bounds checking for a predefined string object and an array object. Java does not
have pointers; however, except for a built in type, an object name is a reference making it
a pointer.

Figure 8: Animation of Algorithms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

Java’s avoidance of direct pointers will reduce students’ programming errors in
linked lists and search trees. Java supports garbage collection with no need for delete or
delete[] or as in Ada unchecked_dealIocation. Java excludes copy constructors,
initializing lists, parameter passing mechanisms, return mechanisms, and constant
member functions. Java passes and returns all built in types by value and all other object
types by reference.

Beginning students are often overwhelmed and confused by having to decide on
the correct parameter passing and return type among value, reference, and constant
reference when learning to program in C++ [11]. Java’s implementation of inheritance
with all binding being dynamic by default eliminates difficulties with C++’s virtual
functions. The Java interface provides an alternative to multiple inheritance. Java’s
inheritance handling is among the strongest reasons to choose Java over C++ or Ada.

5. APPROACH

The approach of the thesis in solving the conventional programming problem is
through the creation of a visual iconic object oriented programming language. Icons are
connected and generate Java code. The program is available through the University of
Texas Pan American Computer Science Department Interactive Systems Laboratory at
http;//www.cs.panam.edu/TR/cs-tr.html. The program is written in C++ and generates
Java code. Visual programming is encouraged by the fact icons convey meaning more
concisely than text, icons are memorable, and icons are understood by people regardless
of the language they speak [23]. A visual programming language is created from varied
cultural experiences and is designed for different audiences using an interdisciplinary
approach drawing on information visualization, graphic design, and cognitive science.

Object oriented programming classes support existing software because the
classes are used unchanged and are easily extended for reuse in new applications [25].
Program visualization uses program execution monitors written in the source code.
Visual programming increases the understanding of runtime system behavior and
provides graphical feedback about program execution allowing people to deal with
voluminous data more effectively than with textual techniques.

The goal of visual object oriented programming systems is to combine the
advantages of function reusability through classes and their instances, the extensibility of
object oriented technology, and the accessibility of visual programming. Object oriented
languages support abstract specification in classes and hierarchies of classes. The object
oriented approach encourages programming modular architectures promoting reliability
and reusability attributes required for large scale programming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.panam.edu/TR/cs-tr.html

www.manaraa.com

19

6. IMPLEMENTATION

A typical screen for the visual iconic object oriented programming to advance
computer science education and novice programming developed for this thesis is shown
below in Figure 9. The icon box allows user to choose a triangle icon to represent an if
statement, a rectangle icon to represent a true statement, or a circle icon to represent a
false statement. The Java code for the if, true, and false statements is entered in boxes
corresponding to the triangle icon for if, the rectangle icon for true, and the circle icon for
false. The icon box allows users to choose a triangle icon to represent a while statement,
a rectangle icon to represent a condition statement, or a circle icon to represent a block
statement. The Java code for the while, condition, and block statements is entered in
boxes corresponding to the triangle icon for while, the rectangle icon for condition, and
the circle icon for block.

FNF HATK_JAVAieeiJrr

if (condition)
{ blockl }
else { block2 }

while (condition)
{ b lock}

i for (expressions)
atement

a. s

HHBMBffli
0 : T rian g le 99 5 0 7 15
1: C ircle 98 531 2 8 5 d 3
2 : R e c ta n g le 9 8 3 99 2 9 0 .; v
3 : T rian g le 75 4 0 0 381 [I
4 : R e c ta n g le 60 2 8 2 4 5 2 i
5 : C ircle 50 4 1 5 4 5 3 d
6 : T riang le 60 2 8 6 5 0 3
7: R e c ta n g le 40 1 99 5 5 8 ^

: 8 : C ircle 48 3 3 9 59 5 d
9 (U ndefined] **1

«pt:

Figure 9: Visual Iconic Object Oriented Programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

Ten icons with the geometrical shapes stated can be selected to generate Java
code. Icons are distinguished by color and shape. Icons can be interactively positioned
on the main window or deleted. Icons are connected by arrows or by having the icon
edges border on each other’s shapes. Subwindows display the Java code generated and
the icons' information regarding their size, x coordinates, and y coordinates on the main
window.

An interactive windows menu uses the mouse to either add, position, or delete a
figure by selecting an interactive menu item. While delete is selected, any figure clicked
on is deleted. The program checks the menu item which is selected and has the selected
item remaining checked until another item is selected. For size specification, an edit field
allows the user to enter the size in pixels of the figure.

A window displays the Java code generated with the icons and includes all the
statements corresponding to the icons. A second window lists all the figures' shapes,
sizes, and positions. A vertical scroll bar is used to view all the information when the
window is sized smaller than needed to show all the items at once. The left mouse button
is used to both select the figure to be animated and indicate where to move the figure.
With a left click in the position mode, positioning an animation will begin with the
second left click. The first left click while in position mode, essentially signals that the
next left click will be the location to animate.

Computer science students are able to interact with any class visualization
through object instantiation and the activation of class methods. The objects are directly
manipulated in a class environment. A visual environment enhances student
understanding of object oriented concepts [13]. Students visualize the interaction of class
components by accepting a class as input and producing a window containing a
visualization of the class methods. Objects may be used as arguments for method
invocation resulting in the instantiation of further objects. The class being viewed may be
changed at any time. The specified class methods will replace the original class methods.
Computer science students can easily move among classes. Objects are created in one
class and used in methods of another class.

7. CONCLUSION

Novice programmers experience tremendous difficulty when programming. One
source of difficulty is a disparity between visual representations used when thinking
about a problem and the coded representations of a programming language.
Programming is a cognitively challenging task requiring the design of programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

architecture, coding modules, choosing wisely among several data structures and
algorithms, constructing the program code, and fixing the inevitable bugs [29]. Visual
iconic object oriented programming by demonstration and analogies enables novice
programmers to create complex program code [24]. Analogies are powerful cognitive
mechanisms people use to construct new knowledge from knowledge they have already
acquired and understand. Programming by demonstration enables the construction of
arbitrary programs by recording actions on sample data and explicitly removing details
from data structures.

Animated programming allows a computer science student to be a character in an
animated virtual world in which programming abstractions are replaced by their tangible
analogs. The visual properties of the interactive elements are used including their size,
shape, color, and appearance to describe the student’s intentions [22], Visual iconic
object oriented programming by demonstration enables a system to record actions
performed by computer science students in the interface to produce a generalized
program code reusable later in analogous examples.

8. LIMITATIONS

Comprehension of visual representations is dependent upon the cultural and prior
experiences of students. Program reuse is a software design constraint. As in
conventional programming approaches, the effective reuse of new behavior is limited by
the underlying representations [30]. A scaling problem poses difficulty in using the same
visual language programming development techniques from small programs to larger
complex coding applications in visual and multimedia computing.

Personal user interactive interfaces combining the understanding of
communicative, cognitive, and perceptual skills with computer input and output devices
require the integration at multiple levels of technologies such as speech and sound
recognition and generation, computer vision, and graphical animated visualization.
Objects need to gain sensors, computational powers, and actuators turning them from
static inanimate objects into adaptive, reactive systems making them more friendly,
useful, and efficient [28].

Parallel or duplicate functionality is required to accomplish natural goals.
Advancing multimodal systems will require multidisciplinary expertise in a variety of
areas beyond computer science including speech and hearing, perception and vision,
linguistics, psychology, signal processing, pattern recognition, and statistics. Machine
vision and image processing at high resolution need to be explored for improved human
computer interaction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

9. FUTURE WORK

Visual languages will extend beyond programming into visual communication
during human computer interaction. Improvements will be in dialogue analysis, user
models, interactive computational models, and visual reasoning. Multimodal interfaces
will facilitate visual querying, visual interaction, interactive computing, and multimedia
communication [27]. Varying paradigms are required for the visual and multimedia
computing life cycle including the integration and synchronization of different media.

The scaling challenge needs to be overcome to apply program development
techniques to larger applications for distributed visual and multimedia computing on the
Web. Visual programming will improve with the enhancement of visual and spatial
reasoning; as well as, with the development of multidimensional, dynamic, multimodal,
and graphic languages.

Interactive interfaces will provide users with greater control, communication,
learning capabilities, direct manipulation, navigation, immediate feedback, and recovery
mechanisms [26]. Users will have full involvement in interface participatory design.
Early development will require frequent testing, validation, and assessment of project
features for corrections, improvements, and modifications, especially, in the construction
of human and computer dialogue.

Future visual languages will be inherently dynamic and interactive. Cognitive
models of how humans understand and reason with visualizations and communicative
diagrams will be developed. Semantics for visual languages will exist without domain
specific knowledge. Multimedia human computer interaction will be enhanced through
interdisciplinary diagrammatic reasoning, data visualization, graphic design, and
cognitive science [7],

Icons, spatial relationships, and time dimension to demonstrate semantic
relationships will be multidimensional. Visual iconic object oriented programming will
be via multiple dimensions. Individual audiences will have accessibility to programming,
will correctly program, and their programming speed will be improved. Visual
programming languages in multiple dimensions will offer particular audiences the
opportunity to program promptly and efficiently.

Visual iconic programming languages will emphasize concreteness as opposed to
abstractness, will be direct in achieving the goals of the user’s actions, will emphasize
explicit semantics, and will automatically display edited semantic effects to improve
people’s ability to program. Natural representations for concepts will innovate
communication in visual programming environments. Scalability devices, hybrid visual
languages, the integration of environments, and metalanguages that create modeling
languages will advance computer science [50]. Visual iconic object oriented
communicative computing will efficiently convey information to students in computer
science education.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23

REFERENCES

[1] Nan C. Shu, IBM Los Angeles Scientific Center, Visual Programming, Van
Nostrand Reinhold Company, Inc., 1988.

[2] Margaret M. Bumett, Adele Goldberg, and Ted G. Lewis, Visual Object Oriented
Programming: Concepts and Environments, Manning Publications Company,
1995.

[3] Tadao Ichikawa, Erland Jungert, and Robert R. Korfhage, Visual Languages and
Applications, Plenum Publishing Corporation, 1990.

[4] Shi Kuo Chang, University of Pittsburgh and Knowledge Systems Institute,
Principles o f Visual Programming Systems, Prentice Hall, Inc., 1990.

[5] Clinton L. Jeffery, Department of Computer Science, University of Nevada, Las
Vegas, Program Monitoring and Visualization: An Exploratory Approach,
Springer Verlag New York, Inc., 1999.

[6] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in Information
Visualization, Using Vision to Think, Morgan Kaufmann Publishers, 1999.

[7] S. K. Chang, M. M. Bamett, S. Levialdi, K. Marriott, J. J. Pfeiffer, and S. L.
Tanimoto, The Future of Visual Languages, in IEEE Proceedings of Visual
Languages, IEEE Symposium on Visual Languages, Pages: 58-61, 1999.

[8] R. J. Wolfe, 3D Graphics: A Visual Approach, Oxford University Press, 2000.
[9] Nan C. Shu, A Visual Programming Language Designed for Automatic

Programming, in System Sciences, Volume 2, Software Track, Proceedings o f the
Twenty-Fifth Annual Hawaii International Conference on Visual Programming
Languages, Pages: 662-671, 1988.

[10] Barry Burd, Wayne Spies, Lee Wittenberg, and Robert Workman, Visual
Programming Tools in the Computer Science Curriculum, in Proceedings o f the
Twenty-Eighth SIGCSE Technical Symposium on Computer Science Education,
Volume 29, Issue I, Pages: 388-389, February 27 - March 1, 1997.

[11] Frank Wester, Marleen Sint, and Peter Kluit, Visual Programming with JAVA:
An Alternative Approach to Introductory Programming, in Integrating
Technology into Computer Science Education, Volume 29, Issue 3, Pages: 57-58,
June 2-4, 1997.

[12] Thomas L. Naps, Algorithm Visualization on the Worid Wide Web: The
Difference Java Makes, in Integrating Technology into Computer Science
Education, Volume 29, Issue 3, Pages: 59-61, June 2-4, 1997.

[13] Herbert L. Dershem and James Vanderhyde, Java Class Visualization for
Teaching Object Oriented Concepts, in Proceedings o f the Twenty-Ninth SIGCSE
Technical Symposium on Computer Science Education, Pages: 53-57, February
25 - March 1, 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

[14] Christopher M. Boroni, Frances W. Goosey, Michael T. Grinder, and Rockford J.
Ross, A Paradigm Shift: The Internet, the Web, Browsers, Java, and the Future of
Computer Science Education, in Proceedings o f the Twenty-Ninth SIGCSE
Technical Symposium on Computer Science Education, Pages: 145-152,
February 25 — March I, 1998.

[15] Christopher M. Boroni, Frances W. Goosey, Michael T. Grinder, Jessica L.
Lambert, and Rockford J. Ross, Tying It All Together Creating Self Contained,
Animated, Interactive, Web Based Resources for Computer Science Education, in
Proceedings o f the Thirtieth SIGCSE Technical Symposium on Computer Science
Education, Pages: 7-11, March 24 to March 28, 1999.

[16] Arturo I. Concepcion, Lawrence E. Cummins, Ernest J. Moran, and Man M. Do,
Algorithma 98: An Algorithm Animation Project, in Proceedings of the Thirtieth
SIGCSE Technical Symposium on Computer Science Education, Pages: 301-305,
March 24 to March 28, 1999.

[17] Linda Stem, Herald Sondergaard, and Lee Naish, A Strategy for Managing
Content Complexity in Algorithm Animation, in Proceedings o f the 4th Annual
SIGCSE/SIGCUE Conference on Innovation and Technology in Computer
Science Education, Pages: 127-130, June 27 — July 1, 1999.

[18] Steve Cunningham, Powers of 10: The Case for Changing the First Course in
Computer Graphics, in Proceedings o f the Thirty-First SIGCSE Technical
Symposium on Computer Science Education, Pages: 46-49, March8 to March 12,
2000.

[19] Thomas L. Naps, James R. Eagan, and Laura L. Norton, Jhave an Environment to
Actively Engage Students in Web Based Algorithm Visualizations, in
Proceedings o f the Thirty-First SIGCSE Technical Symposium on Computer
Science Education, Pages: 109-113, March8 to March 12, 2000.

[20] Guido Robling and Bemd Freisleben, Experience in Using Animations in
Introductory Computer Science Lectures, in Proceedings o f the Thirty-First
SIGCSE Technical Symposium on Computer Science Education, Pages: 134-138,
March8 to March 12, 2000.

[21] Judith Bishop and Nigel Bishop, Object Orientation in Java for Scientific
Programmers, in Proceedings o f the Thirty-First SIGCSE Technical Symposium
on Computer Science Education, Pages: 357-361, March8 to March 12, 2000.

[22] Matthew Turk and George Robertson, Perceptual User Interfaces, in
Communications o f the ACM, Volume 43, Issue 3, Pages: 33-34, March 2000.

[23] Alex Pentland, Perceptual Intelligence, in Communications o f the ACM, Volume
43, Issue 3, Pages: 35-44, March 2000.

[24] Henry Lieberman, Programming by Example, in Communications of the ACM,
Volume 43, Issue 3, Pages: 73-74, March 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25

[25] David Canfield Smith, Allen Cypher, and Larry Tesler, Novice Programming
Comes of Age, in Communications o f the ACM, Volume 43, Issue 3, Pages: 75-
81, March 2000.

[26] Brad A. Myers, Richard McDaniel, and David Wolber, Intelligence in
Demonstrational Interfaces, in Communications o f the ACM, Volume 43, Issue 3,
Pages: 82-89, March 2000.

[27] Alexander Repenning and Corrina Perrone, Programming by Analogous
Examples, in Communications o f the ACM, Volume 43, Issue 3, Pages: 90-97,
March 2000.

[28] Mathias Bauer, Dietmar Dengler, Gabriele Paul, and Markus Meyer,
Programming by Demonstration for Information Agents, in Communications o f
the ACM, Volume 43, Issue 3, Pages: 98-103, March 2000.

[29] Ken Kahn, Generalizing by Removing Detail, in Communications o f the ACM,
Volume 43, Issue 3, Pages: 104-106, March 2000.

[30] Robert St. Amant, Henry Lieberman, Richard Potter, and Luke Zettlemoyer,
Visual Generalization in Programming by Example, in Communications of the
ACM, Volume 43, Issue 3, Pages: 107-114, March 2000.

[31] Alan Watt, 3D Computer Graphics, Addison-Wesley, London, England Pearson
Education, 2000.

[32] Edward Angel, Interactive Computer Graphics: A Top-Down Approach with
OpenGL, Addison-Wesley Longman, Inc., 2000.

[33] Mirko Raner, Teaching Object Orientation with the Object Visualization and
Annotation Language (OVAL), in SIGCSE Bulletin Inroads: Providing the Way
Towards Excellence in Computing Education, Volume 32, Issue 2, Pages: 45-48,
June 2000.

[34] Elizabeth Odekirk, Dominic Jones, and Peter Jensen, Three Semesters of CS0
Using Java: Assignments and Experiences, in SIGCSE Bulletin Inroads:
Providing the Way Towards Excellence in Computing Education, Volume 32,
Issue 2, Pages: 144-147, June 2000.

[35] Ann E. Fleury, Encapsulation and Reuse as Viewed by Java Students, in SIGCSE
Bulletin Inroads: Providing the Way Towards Excellence in Computing
Education, Volume 32, Issue 4, Pages: 189-193, December 2000.

[36] Richard Rasala, Jeff Raab, and Viera K. Proulx, Java Power Tools: Model
Software for Teaching Object Oriented Design, in SIGCSE Bulletin Inroads:
Providing the Way Towards Excellence in Computing Education, Volume 32,
Issue 4, Pages: 297-301, December 2000.

[37] Ralph Morelli, Ralph Walde, Gregg Marcuccio, A Java API for Historical
Ciphers: An Object Oriented Design Project, in SIGCSE Bulletin Inroads:
Providing the Way Towards Excellence in Computing Education, Volume 32,
Issue 4, Pages: 307-311, December 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26

[38] Richard Pattis, Teaching OOP in C++ Using an Artificial Life Framework, in
Proceedings o f the 28th SIGCSE Technical Symposium on Computer Science
Education, Volume 29, Issue 1, Pages: 39-43, February 27—March 1, 1997.

[39] Richard Rasala, Automatic Array Algorithm Animation in C++, in Proceedings o f
the Thirtieth SIGCSE Technical Symposium on Computer Science Education,
Pages: 257-260, March 24 to March 28, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

URL REFERENCES

[40] Programming Visualization:
http://gaigs.cmsc.lawrence.edu/cmsc34/AVClient.html

[41] Programming Visualization:
http://www.cs.brockpoit.edu/cs/iava/apps/sorters/heapsortaniminp.html

[42] Java in Computer Science Education:
http://www.cs.rit.edu/~ncs/tinkerToys/tinkerTovs.html

[43] Algorithm Visualization:
http://www.research.compaq.com/SRC/zeus/gallerv.html

[44] Algorithm Visualization: http://swarm.cs.wustl.edu/cgi-bin/gal
[45] Algorithm Animation:

http://www.cc.gatech.edu/gvu/softviz/parviz/polkaanims.html
[46] Geometric Animation: http://loki.cs.brown.edu:8080/pages/Delaunay.html
[47] Programming Visualization:

http://www.cs.princeton.edu/~ah/alg anim/versionO/Graham.html
[48] Programming Visualization:

http://www.cs.hope.edu/~alganim/animator/Animator.html
[49] Geometric Animation: http://www.latech.edu/~watson/graphics.html
[50] Programming Visualization:

http://www.cs.princeton.edu/~ah/alg anim/versionl/Animator.html

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://gaigs.cmsc.lawrence.edu/cmsc34/AVClient.html
http://www.cs.brockpoit.edu/cs/iava/apps/sorters/heapsortaniminp.html
http://www.cs.rit.edu/~ncs/tinkerToys/tinkerTovs.html
http://www.research.compaq.com/SRC/zeus/gallerv.html
http://swarm.cs.wustl.edu/cgi-bin/gal
http://www.cc.gatech.edu/gvu/softviz/parviz/polkaanims.html
http://loki.cs.brown.edu:8080/pages/Delaunay.html
http://www.cs.princeton.edu/~ah/alg
http://www.cs.hope.edu/~alganim/animator/Animator.html
http://www.latech.edu/~watson/graphics.html
http://www.cs.princeton.edu/~ah/alg

